You are using an outdated browser. For a faster, safer browsing experience, upgrade for free today.

ANTICHOLINESTHERASE ACTIVITY AND LIPID PEROXIDATION AS CRITERIA OF SAFETY IN DERMAL DIAZINON EXPOSURE

https://doi.org/10.33573/ujoh2008.03.035

Yastrub T.A., Leonenko N.C., Kirsenko V.V., Kovalenko V.F.

ANTICHOLINESTHERASE ACTIVITY AND LIPID PEROXIDATION AS CRITERIA OF SAFETY IN DERMAL DIAZINON EXPOSURE

State Institution «Institute for Occupational Health» of the Academy of Medical Sciences of Ukraine

Full article (PDF), UKR


Comparative evaluation of the developed calculation method for determination of the threshold permissible level (TPL) for skin contaminated by Diazinon and an experiment with this pesticide application to the rat skin were performed. The levels of cholinesterase activity in blood plasma, erythrocytes and brain and indices of prooxidant-antioxidant equilibrium were consid¬ered as criteria of safe exposure. It is shown that the value of TPL for Diazinon fully coincides with the no-observed-effect-level established in the experiment. It is supported by determination of cholinesterase level in blood plasma, erythrocytes and brain. The state of the prooxidant-antioxidant equilibrium (thiobarbital-acid-active-products and the content of ceruloplasmin), showing the tendency to the change in lipid peroxidation, points to the effect of this organophosphate insecticide on the body.

Key words: diazinon, threshold permissible level (TPL) of skin contamination, anticholinestherase activity, lipid peroxidation

References

  1. Kundiev YI, Kirsenko VV, YastrubT. (2007), "Determination of maximum permissible levels of skin contamination with pesticides using the coefficient of penetration through the skin", Sovremen. problemy toksikologii, 2,45-49.
  2. Hihiyenichna klasyfikatsiya pestytsydiv za stupenem nebezpechnosti.-DSanPiN 8.8.1.002-98, K., 1998.-S. 4-8.
  3. Yastrub T.O., Kirsenko V.V. (2007), "Influence of organic solvents on the threshold limit values on the skin", Sovremen. problemy toksikologii, 4, 4-7.
  4. Cronin M.T.D., Dearden J.C., Moss G.P., Murray- Dickson G. Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships // Eur.J.Pharm.Sci.- 1999.-V.7.- P. 325-330. https://doi.org/10.1016/S0928-0987(98)00041-4
  5. McGill, H. C. Jr., McMahan, C. A., Kruski, A. W. and Mott, G. E. Relationship of lipoprotein cholesterol concentrations to experimental atherosclerosis in baboons // Arteriosclerosis.- 1981,-V.I.- P. 3-12. https://doi.org/10.1161/01.ATV.1.1.3
  6. Quistad, G. B., Sparks, S. E. and Casida, J. E. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides // Toxicol. Appl. Pharmacol.- 2001,-P.173. https://doi.org/10.1006/taap.2001.9175
  7. Gultekin F. The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant, enzymes (in vitro) // Arch.Toxicol.- 2000-V. 74 - P. 533-538. https://doi.org/10.1007/s002040000167
  8. Gupta RC: Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants // Neurotoxicology.- 2001, V.22.- P.271-282. https://doi.org/10.1016/S0161-813X(01)00013-4
  9. Gupta RC: Nitric oxide modulates high-energy phosphates in brain regions of rats intoxicated with diisopropylphosphorofluoridate or carbofuran: prevention by N-tert-butyl-alpha-phenylnitrone or vitamin E // Arch. Toxicol.- 2001.- V.75.- P. 346-356. https://doi.org/10.1007/s002040100249
  10. Verma RS: Chlorpyrifos-ihduced alterations in levels of thiobarbituric acid reactive substances and glutathione in rat brain // Indian J Exp Biol.- 2001.- V. 39,- P. 174-177.
  11. Akhgari M, Abdollahi M, Kebryaeezadeh A et al: Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats // Hum Exp Toxicol.- 2003.- V. 22.- P. 205-211. https://doi.org/10.1191/0960327103ht346oa
  12. Banerjee BD, Seth V, Bhattacharya A. Pasha ST, Chakraborty AK: Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers // Toxicol Lett.- 1999-V. 107,- P.33-47. https://doi.org/10.1016/S0378-4274(99)00029-6
  13. Ranjbar A, Pasalar P, Abdollahi M: Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers // Hum Exp Toxicol-2002-V.241-P.179-82. https://doi.org/10.1191/0960327102ht238oa
  14. DantoineT, Debord JP, Merle L, Charmes JP: Roles of Paraoxonase 1 in organophosphate compounds toxicity and in atherosclerosis / / Rev Med Interne.- 2003.- V.24.- P. 436-442. https://doi.org/10.1016/S0248-8663(03)00058-4
  15. Poovala VS, Huang H. Salahudeen AK: Role of reactive oxygen metabolites in organophosphate- induced renal tubular cytotoxicity // J. Am. Soc Nephrol.-1999.-V. 10.-P. 1746-1752
  16. Metody opredeleniya toksichnosti i opasnosti khimicheskikh veshchestv (toksikometriya) /Pod red. prof. I.V. Sanotskogo.-M.: Meditsina, 1970.-343 s.
  17. Kamyshnikov V.S. Spravochnik po kliniko-biokhimicheskoy laboratornoy diagnostike: V 2 t. - T 2,- Minsk: Belarus', 2000.- 495 s.