You are using an outdated browser. For a faster, safer browsing experience, upgrade for free today.

EXPERIMENTAL DATA ON DISORDERS OF EXPRESSION OF CIRCADIAN GENES IN UVER AND LUNGS AS A MARKER OF METHYL-TRETBUTYL ETHER TOXIC EFFECT ON THE BODY

https://doi.org/10.33573/ujoh2008.03.020


Minchenko D.O., Yavorovsky O.P., Zavgorodny I.V., Paustovsky Y.O., Tsuchihara K., Esumi H., Minchenko O.H.

EXPERIMENTAL DATA ON DISORDERS OF EXPRESSION OF CIRCADIAN GENES IN UVER AND LUNGS AS A MARKER OF METHYL-TRETBUTYL ETHER TOXIC EFFECT ON THE BODY

Full article (PDF), UKR


The development of physiological and biochemical processes in the body is of a circadian character and disorders in their reg-ulation can result in occurrence of different pathological processes, formation of malignant tumours, in particular. The Per2, BMall, Clock and caseinkinase-le are important regulators, which control these processes in normal and pathological con-ditions. We have shown that methyl-tretbutyl ether (MTBE), a toxic and ecologically dangerous chemical compound, can change significantly the expression of Per2, Clock and caseinkinase-le genes in rat liver and lungs. The disorders of such gene expression can destroy the cellular signal pathways and lead to development of pathological processes. The results of our investigation clearly demonstrate that MTBE cause a significant effect on important regulatory mechanisms, which control cell metabolism via circadian gene expression, Per2, Clock and caseinkinase-le, in particular. The expression of circadian genes can be used as a possible sensitive test for detection of the toxic effect of ecologically dangerous chemical compounds on the body.

Key words: liver, genes, expression, methyl-tretbuthyl ether

References

  1. Gonze D., Goldbeter A. Circadian rhythms and molecular noise // Chaos, 2006,- V. 16, No 2.- R 026110 ( 1-11 ). https://doi.org/10.1063/1.2211767
  2. Dunlap J.C. Molecular bases for circadian clocks // Cell. 1999.-V. 96. No 2.- P. 271-290. https://doi.org/10.1016/S0092-8674(00)80566-8
  3. Harmer S.L., Panda S., Kay S.A. Molecular bases of circadian rhythms // Ann. Rev. Cell. Dev. Biol., 2001.-No 17.- P. 215-253. https://doi.org/10.1146/annurev.cellbio.17.1.215
  4. Teboul M., Barrat-Petit M.-A., Li X.M. et al. Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells // J. Mol. Med., 2005,- No .83 - P. 693-699. https://doi.org/10.1007/s00109-005-0697-6
  5. Eide E.J., Woolf M.F., Kang H. Control of mammalian circadian rhythm by CKlepsilon-regulated pro- teasome-mediated PER2 degradation // Mol. Cell. Biol., 2005,-V.25, No 7,- P. 2795-2807. https://doi.org/10.1128/MCB.25.7.2795-2807.2005
  6. Turek F.W., Joshu C., Kohsaka A. et al. Obesity and metabolic syndrome in circadian Clock mutant mice // Science, 2005.-V.308, No 5724,- P. 1043-1045. https://doi.org/10.1126/science.1108750
  7. Oishi K., Shirai H., Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-prolifera- tor-activated receptor alpha (PPARalpha) in mice // Biochem. J" 2005.-386, PT3-. P. 575-581. https://doi.org/10.1042/BJ20041150
  8. Rudic R.D., McNamara R, Curtis A.M. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis // PLoS Biol., 2004,- V. 2, No 11.- P. E377. https://doi.org/10.1371/journal.pbio.0020377
  9. Hogenesch J.B., Gu Y.Z., Jain S., Bradfield C.A. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors // Proc. Natl. Acad. Sci. U.S.A., 1998,- V. 95, No 10.- P. 5474-5479. https://doi.org/10.1073/pnas.95.10.5474
  10. Gekakis N., Staknis D., Nguyen H.B. et al. Role of the CLOCK protein in the mammalian circadian mechanism // Science, 1998.-V.280, No 5369.- P. 1564-1569. https://doi.org/10.1126/science.280.5369.1564
  11. Tsinkalovsky O., Smaaland R., Rosenlund B. et al. Circadian variations in clock gene expression of human bone marrow CD34+ cells // J. Biol. Rhythms., 2007.-V.22, No2.-P. 140-150. https://doi.org/10.1177/0748730406299078
  12. Gamaleya N.F., Shishko Ye.D. Differentsial'naya tsirkadial'naya reaktsiya na svet, proyavlyayemaya T kletkami i bol'shimi granulyarnymi limfotsitami cheloveka in vitro // Dopovídí NAN Ukraí̈ni, 2007,- No 9,-S. 131-136.
  13. ChilovD., HoferT, BauerC. et al. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain // FASEB J., 2001,-No 15.-P. 2613-2622. https://doi.org/10.1096/fj.01-0092com
  14. Grechez-Cassiau A., Rayet B., Guillaumond F. et al. The circadian clock component bmall is a critical regulator of p21waf1/cip 1expression and hepatocyte proliferation // J. Biol. Chem., 2008.- V.283, No 8.- p. 4535-4542. https://doi.org/10.1074/jbc.M705576200
  15. You S., Wood P.A., Xiong Y. et al. Daily coordination of cancer growth and circadian clock gene expression // Breast Cancer Res. Treat., 2005,- V.91. No 1,- P. 47-60. https://doi.org/10.1007/s10549-004-6603-z
  16. Chen S.T., Choo K.B., Hou M.F. et al. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis., 2005.- V.26, No 7,- P. 1241-1246. https://doi.org/10.1093/carcin/bgi075
  17. Winter S.L., Bosnoyan-Collins L., Pinnaduwage D., Andrulis I.L. Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors // Neoplasia., 2007.- V.9, No 10.-P. 797-800. https://doi.org/10.1593/neo.07595
  18. Lee C.C. The circadian clock and tumor suppression by Mammalian period genes. Methods Enzymol., 2005.- V.393.- P. 852-861. https://doi.org/10.1016/S0076-6879(05)93045-0
  19. Fu L., Pelicano H., Liu J., Huang P, Lee C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo // Cell, 2002- V. 111, No l.-P. 41-50. https://doi.org/10.1016/S0092-8674(02)00961-3
  20. Yeh K.T., Yang M.Y., Liu T.C. et al. Abnormal expression of period 1 (PER1) in endometrial carcinoma. J. Pathol., 2005,-V.206, No 1-. P. 111-120. https://doi.org/10.1002/path.1756
  21. Shih H.C., Choo K.B., Chang T.J. et al. Disturbance of circadian gene expression in endometrial cancer: detection by real-time quantitative RT-PCR // Oncol. Rep., 2005-V. 14. No 6.- P. 1533-1538. https://doi.org/10.3892/or.14.6.1533
  22. Gery S., Gombart A.F., Yi W.S. et al. Transcription profiling of C/ EBP targets identifies Per2 as a gene implicated in myeloid leukaemia // Blood, 2005.- V. 106, No 8,- P. 2827-2836. https://doi.org/10.1182/blood-2005-01-0358
  23. Vielhaber E., Eide E., Rivers A. et al. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon // Mol. Cell. Biol., 2000,-V.20, No 13.-P. 4888-4899. https://doi.org/10.1128/MCB.20.13.4888-4899.2000
  24. Keesler G.A., Camacho F, Guo Y. et al. Phosphorylation and destabilization of human period I clock protein by human casein kinase 1 epsilon. Neuroreport, 2000.-V. 11, No 5.- P. 951-955. https://doi.org/10.1097/00001756-200004070-00011
  25. Gietzen K.F., Virshup D.M. Identification of inhibitory autophosphorylation sites in casein kinase i epsilon // J. Biol. Chem., 1999 - V.274, No 45.- P. 32063-32070. https://doi.org/10.1074/jbc.274.45.32063
  26. Shirogane T" Jin J., Ang X.L., Harper J.W. SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1 -dependent degradation of the mammalian period-1 (Per1) protein // J. Biol. Chem., 2005.- V.280, No 29.- P. 26863-26872. https://doi.org/10.1074/jbc.M502862200
  27. Okamura A., Iwata N., Tamekane A. et al. Casein kinase Iepsilon down-regulates phospho-Akt via PTEN, following genotoxic stress-induced apoptosis in hematopoietic cells // Life Sci., 2006.- V.78, No 14.- P. 1624-1629. https://doi.org/10.1016/j.lfs.2005.07.041
  28. Waddell D.S., Liberati N.T., Guo X. et al. Casein kinase Iepsilon plays a functional role in the transforming growth factor-beta signaling pathway // J. Biol. Chem., 2004,- V. 279, No 28,- P. 29236-29246. https://doi.org/10.1074/jbc.M400880200
  29. Eide E.J., Vielhaber E.L., Hinz W.A., Virshup D.M. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon // J. Biol. Chem., 2002,-V. 277. No 19,- P. 17248-17254. https://doi.org/10.1074/jbc.M111466200
  30. Akashi M., Tsuchiya Y, Yoshino T, Nishida E. Control of intracellular dynamics of mammalian period proteins by casein kinase 1 epsilon (CKlepsilon) and CKIdelta in cultured cells // Mol. Cell. Biol., 2002,- V.22, No 6.-P. 1693-1703. https://doi.org/10.1128/MCB.22.6.1693-1703.2002
  31. GaoZ.H., SeelingJ.M., Hill V. etal. Casein kinase i phosphorylates and destabilizes the beta-catenin degradation complex // Proc. Natl. Acad. Sci. U.S.A., 2002.-V.99, No 3.-P. 1182-1187.
  32. Rubinfeld B., Tice D.A., Polakis P. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase Iepsilon // J. Biol. Chem., 2001 -. V.276, No 42,- P. 39037-39045. https://doi.org/10.1074/jbc.M105148200
  33. Desagher S., Osen-Sand A., Montessuit S. et al. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8 // Mol. Cell., 2001.- V.8, No 3,- P.601-611. https://doi.org/10.1016/S1097-2765(01)00335-5
  34. Knippschild U., Milne D.M., Campbell L.E. et al. p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase- directed drugs // Oncogene, 1997.- V. 15, No 14.- P. 1727-1736. https://doi.org/10.1038/sj.onc.1201541
  35. Miyazaki K., Nagase T, Mesaki M. et al. Phosphorylation of clock protein PERI regulates its circadian degradation in normal human fibroblasts // Biochem. J., 2004,-V. 380, PT 1. P. 95-103. https://doi.org/10.1042/bj20031308
  36. Sato T.K., Yamada R.G., Ukai H. et al. Feedback repression is required for mammalian circadian clock function // Nat. Genet., 2006.-V.38, No 3.- P. 312-319. https://doi.org/10.1038/ng1745
  37. Motzkus D., Loumi S., Cadenas C. et al. Activation of human period-1 by PKA or CLOCK/BMAL1 is conferred by separate signal transduction pathways // Chronobiol. Int., 2007.-V.24, No 5.- P.783-792. https://doi.org/10.1080/07420520701672481
  38. Yavorovskyy O.P., Zenkina V.I. Metyl-tretbutylovyy efir yak hlobalnyy zabrudnyuvach dovkillya. Toksykolohichni ta ekolohichni aspekty ryzyku vplyvu v Ukrayini // Dovkillya ta zdorov'ya, 2006,- S.75-80.
  39. Minchenko O.H., Opentanova I.L., Minchenko D.O. et al. Hypoxia induces transcription of 6-phospho- fructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1 alpha activation // FEBS Lett.- 2004.-V. 576, No 1,- P. 14-20. https://doi.org/10.1016/j.febslet.2004.08.053