https://doi.org/10.33573/ujoh2006.01.062
Demetskaya A.V., Kucheruk T.K., Movchan V.A.
NANOPARTICLES: POSSIBLE CONTRIBUTION TO DEVELOPMENT OF OCCUPATIONAL PATHOLOGY
Institute for occupational health of AMS of Ukraine, Kiev
Full article (PDF), RUS
The revolution in nanotechnology is set to bring advantages in areas of our lives as diverse as engineering, information tech-nology, diagnostics and a new subcategory of toxicology — «nanotoxicology». Nanoparticles of airborne at workplaces have been associated with increased pulmonary and cardiovascular morbidity and mortality due of a specific toxicological role of ultraflne particles. In present investigations of biological properties and role of nano-particles in developing of occupational diseases are very actual problem in the world and in the Ukraine.
Key words: nanotechnology, nanotoxicology, nanoparticles, ultrafine particles, welding aerosols
References
- Gorban' L.N., Prilipko V.A., Voytkevich V.G., Fedorina Ye.Ye. Stroyeniye chastits svarochnogo aerozolya i ikh biologicheskaya aktivnost' // Gig. i san - 1986.- No 7.- S. 23-26.
- Zerbino D.D. Vaskulity i angiopatii.- K.: Zdorov'ye. 1977.- 100 s.
- Zerbino D.D.. Pospishil YU.O. Infarkt miokarda v molodomu vitsi: etiolohiya i patohenez // Likarska sprava,- 1993,- No 5 - S. 117-119.
- Zerbino D.D., Pospishilʹ YU.O. Infarkt miokarda i porivnyalʹnyy analiz etiolohichnykh faktoriv // Dopov. AN Ukrayiny,-1995,-№9,-S. 177-179.
- Matsko N.V. Faktory profesiynoho ryzyku ta osob¬lyvosti formuvannya i perebihu ishemichnoyi khvoroby sertsya u zvaryuvalnykiv staley: Avtoref. dys.... kand. med. nauk.- Lviv. 2000.- 20 s.
- Smirnova I.P., Kukhlya YU.I. Epidemiologicheskoye issledovaniye ishemicheskoy bolezni serdtsa i yeye faktorov riska v neorganizovannoy populyatsii // Vracheb. delo,- 1981,-No 9.-S. 31-33.
- Professional'nyye bolezni/Pod red. Ye.M.Tareyeva, A.A.Bezrodnykh,-M.: Meditsina, 1976.-S. 97-99.
- Auer S., Frenkel D. Suppression of crystal nucleation in polydlsperse colloids due to increase of the surface free energy // Nature.-2001.-V.413. No 6857,-P. 711-713. https://doi.org/10.1038/35099513
- Brouwer D.H., Gijsberg J.H., Lurvink M.W. Personal exposure to ultraflne particles In the workplace: exploring sampling techniques and strategies // Ann. Occup. Hyg.- 2004,-V.48. No 5.- P. 439-453.
- Chaumet P.C., Rahmani A. Optical trapping and manipulation of nano-objects with an apertureless probe / / Phys. Rev. Lett.-2002.-V.88. No 12.-P. 123601. https://doi.org/10.1103/PhysRevLett.88.123601
- Chew N.Y., Chan H.K. The role of particle properties in pharmaceutical powder inhalation formulations // J. Aerosol. Med.- 2002.- V. 15, No 3.- P. 325-330. https://doi.org/10.1089/089426802760292672
- Cintron JM., Colon LA. Organo-silica nanoparticles used in ultrahigh-pressure liquid chromatography / / Analyst.- 2002.- V. 127. No 6,- P. 701 -704. https://doi.org/10.1039/b203236h
- Delftno RJ., Sioutas C., Malik S. Potential role of ultraflne particles in associations between airborn particle mass and cardiovascular health // Environ. Health Perspect.- 2005,- V. 113. No 8.- P. 934-946. https://doi.org/10.1289/ehp.7938
- Delie F. Evaluation of nano- and microparticle uptake by the gastrointerstinal tract // Adv. Drug Deliv. Rev.- 1998,-V.34. No 3-4,- P. 544-547. https://doi.org/10.1016/S0169-409X(98)00041-6
- Donaldson K., Stone V. Current hypotheses on mechanisms of toxicity of ultraflne particles // Ann. 1st. Super Sanita.- 2003,-V.39. No 3.- P. 405-410.
- Donaldson K.. Stone V.. Tran C.L. et al. Nanotoxicology // Occup. Environ. Med.-2004.-V.61.- P. 727-728. https://doi.org/10.1136/oem.2004.013243
- Fukumori Y. Structure and function of nano-size biomagnetic particles // Seikagaku.- 2000,- V.72, No 9,- P. 1165-1168.
- Geiser M., Rothen-Rutishauser B., Kapp N. Ultraflne particles cross cellular membranes by nonphagocytic mechanism in lungs and in cultured cells // Environ. Health Perspect.- 2005.-V. 113, No 11.- P. 1555-1560. https://doi.org/10.1289/ehp.8006
- Gradon L., Orlicki D., Podgorski A. Deposition and retention of ultraflne aerosol particles in the human respiratory system. Normal and pathological cases // Int. J. Occup. Saf. Ergon.- 2000.- V.6. No 2,- P. 189-207. https://doi.org/10.1080/10803548.2000.11076451
- Ibald-Mulli A.. Wichmann H/E., Kreyling W.. Peters A. Epidemiological evidence on health effects of ultraflne particles // J. Aerosol. Med - 2002-V. 12, No 2 - P. 189-201. https://doi.org/10.1089/089426802320282310
- Ingelsten H/H., Bagwe R.. Palmvist A. Kinetics of the Formation of Nano-Sized Platinum Particles in Water- in-Oil Microemulsions // J. Colloid Interface Sci.- 2001,- V.241, No 1.- P. 104-111. https://doi.org/10.1006/jcis.2001.7747
- IshidaT., Iden D.L., Allen T.M. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs // FEBSLett.- 1999,-V.460. No 1,- P. 129-133. https://doi.org/10.1016/S0014-5793(99)01320-4
- Jaeger L., Westhof E., Leontis N.B. Tecto RNA: modular assembly units for the construction of RNA nano-objects / / Nucl. Acids Res.- 2001.- V.29, No 2.- P. 455-463. https://doi.org/10.1093/nar/29.2.455
- Kaewatawong T., Kavamura N.. Okajima M. et al. Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice //Toxicol. Pathol.- 2005.- V.33.- P. 745-751. https://doi.org/10.1080/01926230500416302
- Kim H., Liu X., Kobayashi T. Ultraflne carbon black particles inhibit human lung fibroblast-mediated collagen gel construction //Am. J. Res. Cell Mol. Biol.- 2003.- V.28.-P. 111-120. https://doi.org/10.1165/rcmb.4796
- Lundborg M.. Dahlen S.E., Johard U. et al. Aggregates of ultraflne particles impair phagocytosis of microorganisms by human alveolar macrophages // Environ. Res - 2005 - Sep. 17 [Epub. ahead print]
- Lu J., Rosenzweig Z. Nanoscale fluorescent sensors for intracellular analysis // J. Anal. Chem.- 2000,- V.366, No 23-24 - P. 569-575. https://doi.org/10.1007/s002160051552
- Maxwell D.J., Taylor J.R., Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules // J. Am. Chem. Soc.- 2002,- V. 124. No 32,- P. 9606-9612. https://doi.org/10.1021/ja025814p
- Oberdorster G. Pulmonary effects of inhaled ultrafine particles // Int. Arch. Occup. Environ. Health- 2001.-V. 74. No 1.- P. 1-8.
- Oberdoster G. Significance of particle parametres in the evaluation of exposure-dose-response relationships of inhaled particles // Inhal. Tbxicol.- 1996.- V.8.- P. 73-89.
- Oberdoster G.. Finkelstein J.N., Johnston C. et al. Acute pulmonary effects of ultraflne particles in rats and mice // Res. Rep. Health Eff. Inst.- 2000.- V.96, No 5,- P. 74-86.
- Oberdoster G., Oberdoster E.. Oberdoster J. Nanotoxicology: an emerging discipline evolving from studies of ultraflne particles // Environ. Health Perspect - 2005-V. 113, No 7 - P. 823-839. https://doi.org/10.1289/ehp.7339
- Thomassen Y.. Koch W., Dunkhort W., Ellingsen D.G. Ultraflne particles at workplaces of a primary aluminium smelter // J. Environ. Monit.- 2006.-V.8, No 1,- P. 123-133. https://doi.org/10.1039/B514939H
- Tobias H.J., Beving D.E., Ziemann P.J. Chemical analysis of diesel engine nanoparticles using a nano- DMA/thermal desorption particle beam mass spectrometer // Environ. Sci. Technol.- 2001.-V.35, No 11.- P. 2233-2243. https://doi.org/10.1021/es0016654
- Von Klot S., Peters A.. Aalto P. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities // Circulation.- 2005,-V. 112. No 20.- P. 3073-3079. https://doi.org/10.1161/CIRCULATIONAHA.105.548743
- Yu X., Song S.K., Chen J. High-resolution MRI characterization of human thrombus using a novel fibrin- targeted paramagnetic nanoparticle contrast agent // Magn. Reson. Med - 2000-V. 44. No 6 - P. 867-872. https://doi.org/10.1002/1522-2594(200012)44:6<867::AID-MRM7>3.0.CO;2-P
- Zimmer A.T. The influence of metallurgy on the formation of welding aerosols // J. Environ. Monit.- 2002.- V.4. No 5.- P. 628-632. https://doi.org/10.1039/B202337G