You are using an outdated browser. For a faster, safer browsing experience, upgrade for free today.

NANOPARTICLES: POSSIBLE CONTRIBUTION TO DEVELOPMENT OF OCCUPATIONAL PATHOLOGY

https://doi.org/10.33573/ujoh2006.01.062

Demetskaya A.V., Kucheruk T.K., Movchan V.A.

NANOPARTICLES: POSSIBLE CONTRIBUTION TO DEVELOPMENT OF OCCUPATIONAL PATHOLOGY

Institute for occupational health of AMS of Ukraine, Kiev

Full article (PDF), RUS

The revolution in nanotechnology is set to bring advantages in areas of our lives as diverse as engineering, information tech-nology, diagnostics and a new subcategory of toxicology — «nanotoxicology». Nanoparticles of airborne at workplaces have been associated with increased pulmonary and cardiovascular morbidity and mortality due of a specific toxicological role of ultraflne particles. In present investigations of biological properties and role of nano-particles in developing of occupational diseases are very actual problem in the world and in the Ukraine.

Key words: nanotechnology, nanotoxicology, nanoparticles, ultrafine particles, welding aerosols

References

  1. Gorban' L.N., Prilipko V.A., Voytkevich V.G., Fedorina Ye.Ye. Stroyeniye chastits svarochnogo aerozolya i ikh biologicheskaya aktivnost' // Gig. i san - 1986.- No 7.- S. 23-26.
  2. Zerbino D.D. Vaskulity i angiopatii.- K.: Zdorov'ye. 1977.- 100 s.
  3. Zerbino D.D.. Pospishil YU.O. Infarkt miokarda v molodomu vitsi: etiolohiya i patohenez // Likarska sprava,- 1993,- No 5 - S. 117-119.
  4. Zerbino D.D., Pospishilʹ YU.O. Infarkt miokarda i porivnyalʹnyy analiz etiolohichnykh faktoriv // Dopov. AN Ukrayiny,-1995,-№9,-S. 177-179.
  5. Matsko N.V. Faktory profesiynoho ryzyku ta osob¬lyvosti formuvannya i perebihu ishemichnoyi khvoroby sertsya u zvaryuvalnykiv staley: Avtoref. dys.... kand. med. nauk.- Lviv. 2000.- 20 s.
  6. Smirnova I.P., Kukhlya YU.I. Epidemiologicheskoye issledovaniye ishemicheskoy bolezni serdtsa i yeye faktorov riska v neorganizovannoy populyatsii // Vracheb. delo,- 1981,-No 9.-S. 31-33.
  7. Professional'nyye bolezni/Pod red. Ye.M.Tareyeva, A.A.Bezrodnykh,-M.: Meditsina, 1976.-S. 97-99.
  8. Auer S., Frenkel D. Suppression of crystal nucleation in polydlsperse colloids due to increase of the surface free energy // Nature.-2001.-V.413. No 6857,-P. 711-713. https://doi.org/10.1038/35099513
  9. Brouwer D.H., Gijsberg J.H., Lurvink M.W. Personal exposure to ultraflne particles In the workplace: exploring sampling techniques and strategies // Ann. Occup. Hyg.- 2004,-V.48. No 5.- P. 439-453.
  10. Chaumet P.C., Rahmani A. Optical trapping and manipulation of nano-objects with an apertureless probe / / Phys. Rev. Lett.-2002.-V.88. No 12.-P. 123601. https://doi.org/10.1103/PhysRevLett.88.123601
  11. Chew N.Y., Chan H.K. The role of particle properties in pharmaceutical powder inhalation formulations // J. Aerosol. Med.- 2002.- V. 15, No 3.- P. 325-330. https://doi.org/10.1089/089426802760292672
  12. Cintron JM., Colon LA. Organo-silica nanoparti­cles used in ultrahigh-pressure liquid chromatography / / Analyst.- 2002.- V. 127. No 6,- P. 701 -704. https://doi.org/10.1039/b203236h
  13. Delftno RJ., Sioutas C., Malik S. Potential role of ultraflne particles in associations between airborn particle mass and cardiovascular health // Environ. Health Perspect.- 2005,- V. 113. No 8.- P. 934-946. https://doi.org/10.1289/ehp.7938
  14. Delie F. Evaluation of nano- and microparticle uptake by the gastrointerstinal tract // Adv. Drug Deliv. Rev.- 1998,-V.34. No 3-4,- P. 544-547. https://doi.org/10.1016/S0169-409X(98)00041-6
  15. Donaldson K., Stone V. Current hypotheses on mechanisms of toxicity of ultraflne particles // Ann. 1st. Super Sanita.- 2003,-V.39. No 3.- P. 405-410.
  16. Donaldson K.. Stone V.. Tran C.L. et al. Nanotoxi­cology // Occup. Environ. Med.-2004.-V.61.- P. 727-728. https://doi.org/10.1136/oem.2004.013243
  17. Fukumori Y. Structure and function of nano-size biomagnetic particles // Seikagaku.- 2000,- V.72, No 9,- P. 1165-1168.
  18. Geiser M., Rothen-Rutishauser B., Kapp N. Ultraflne particles cross cellular membranes by nonphagocytic mechanism in lungs and in cultured cells // Environ. Health Perspect.- 2005.-V. 113, No 11.- P. 1555-1560. https://doi.org/10.1289/ehp.8006
  19. Gradon L., Orlicki D., Podgorski A. Deposition and retention of ultraflne aerosol particles in the human respira­tory system. Normal and pathological cases // Int. J. Occup. Saf. Ergon.- 2000.- V.6. No 2,- P. 189-207. https://doi.org/10.1080/10803548.2000.11076451
  20. Ibald-Mulli A.. Wichmann H/E., Kreyling W.. Peters A. Epidemiological evidence on health effects of ultraflne par­ticles // J. Aerosol. Med - 2002-V. 12, No 2 - P. 189-201. https://doi.org/10.1089/089426802320282310
  21. Ingelsten H/H., Bagwe R.. Palmvist A. Kinetics of the Formation of Nano-Sized Platinum Particles in Water- in-Oil Microemulsions // J. Colloid Interface Sci.- 2001,- V.241, No 1.- P. 104-111. https://doi.org/10.1006/jcis.2001.7747
  22. IshidaT., Iden D.L., Allen T.M. A combinatorial appro­ach to producing sterically stabilized (Stealth) immunoliposomal drugs // FEBSLett.- 1999,-V.460. No 1,- P. 129-133. https://doi.org/10.1016/S0014-5793(99)01320-4
  23. Jaeger L., Westhof E., Leontis N.B. Tecto RNA: mod­ular assembly units for the construction of RNA nano­-objects / / Nucl. Acids Res.- 2001.- V.29, No 2.- P. 455-463. https://doi.org/10.1093/nar/29.2.455
  24. Kaewatawong T., Kavamura N.. Okajima M. et al. Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice //Toxicol. Pathol.- 2005.- V.33.- P. 745-751. https://doi.org/10.1080/01926230500416302
  25. Kim H., Liu X., Kobayashi T. Ultraflne carbon black particles inhibit human lung fibroblast-mediated colla­gen gel construction //Am. J. Res. Cell Mol. Biol.- 2003.- V.28.-P. 111-120. https://doi.org/10.1165/rcmb.4796
  26. Lundborg M.. Dahlen S.E., Johard U. et al. Aggregates of ultraflne particles impair phagocytosis of microorganisms by human alveolar macrophages // Environ. Res - 2005 - Sep. 17 [Epub. ahead print]
  27. Lu J., Rosenzweig Z. Nanoscale fluorescent sen­sors for intracellular analysis // J. Anal. Chem.- 2000,- V.366, No 23-24 - P. 569-575. https://doi.org/10.1007/s002160051552
  28. Maxwell D.J., Taylor J.R., Nie S. Self-assembled nanoparticle probes for recognition and detection of bio­molecules // J. Am. Chem. Soc.- 2002,- V. 124. No 32,- P. 9606-9612. https://doi.org/10.1021/ja025814p
  29. Oberdorster G. Pulmonary effects of inhaled ultra­fine particles // Int. Arch. Occup. Environ. Health- 2001.-V. 74. No 1.- P. 1-8.
  30. Oberdoster G. Significance of particle parametres in the evaluation of exposure-dose-response relation­ships of inhaled particles // Inhal. Tbxicol.- 1996.- V.8.- P. 73-89.
  31. Oberdoster G.. Finkelstein J.N., Johnston C. et al. Acute pulmonary effects of ultraflne particles in rats and mice // Res. Rep. Health Eff. Inst.- 2000.- V.96, No 5,- P. 74-86.
  32. Oberdoster G., Oberdoster E.. Oberdoster J. Nanotoxicology: an emerging discipline evolving from studies of ultraflne particles // Environ. Health Perspect - 2005-V. 113, No 7 - P. 823-839. https://doi.org/10.1289/ehp.7339
  33. Thomassen Y.. Koch W., Dunkhort W., Ellingsen D.G. Ultraflne particles at workplaces of a primary alu­minium smelter // J. Environ. Monit.- 2006.-V.8, No 1,- P. 123-133. https://doi.org/10.1039/B514939H
  34. Tobias H.J., Beving D.E., Ziemann P.J. Chemical analysis of diesel engine nanoparticles using a nano- DMA/thermal desorption particle beam mass spec­trometer // Environ. Sci. Technol.- 2001.-V.35, No 11.- P. 2233-2243. https://doi.org/10.1021/es0016654
  35. Von Klot S., Peters A.. Aalto P. Ambient air pollu­tion is associated with increased risk of hospital car­diac readmissions of myocardial infarction survivors in five European cities // Circulation.- 2005,-V. 112. No 20.- P. 3073-3079. https://doi.org/10.1161/CIRCULATIONAHA.105.548743
  36. Yu X., Song S.K., Chen J. High-resolution MRI characterization of human thrombus using a novel fibrin- targeted paramagnetic nanoparticle contrast agent // Magn. Reson. Med - 2000-V. 44. No 6 - P. 867-872. https://doi.org/10.1002/1522-2594(200012)44:6<867::AID-MRM7>3.0.CO;2-P
  37. Zimmer A.T. The influence of metallurgy on the for­mation of welding aerosols // J. Environ. Monit.- 2002.- V.4. No 5.- P. 628-632. https://doi.org/10.1039/B202337G