You are using an outdated browser. For a faster, safer browsing experience, upgrade for free today.

PECULIARITY OF IRON METABOLISM AND ITS ROLE IN CARCINOGENESIS PROCESSES

2(35) 2013

https://doi.org/10.33573/ujoh2013.02.055

Lugovskiy S. P.1, Lubyanova I. P.2, Klimenko P. P.3

PECULIARITY OF IRON METABOLISM AND ITS ROLE IN CARCINOGENESIS PROCESSES

1SI «Ukrainian Institute of Industrial Medicine of Ministry of Health of Ukraine», Kryvyi Rig
2SI «Institute for Occupational Health of NAMS of Ukraine», Kyiv
3SI «Institute of Gerontology of NAMS of Ukraine», Kyiv

Full article (PDF), RUS

New date on the role in cancer development are presented in the paper, including, also, those of occupational health. Key chains of iron metabolism, causing the effect on the viability and proliferative activity of cells have been defined. Using the date, laid down in the paper, will help to improve risk assessment and prognosis of the development of malignant tumors, diagnostics, prophylaxis and treatment of workers, exposed to iron or its compounds.

Keywords: iron metabolism, carcinogenesis, occupational cancer

References

  1. IARC Monographs on the evaluation of carcinogenic risks to humans (Internet. Report 08/001) / Report of the advisory group to recommend priorities for IARC: Monographs during 2010-2014 - [Electronic resource] - Mode of access: http://monographs.iarc.fr/ENG/Publications/internrep/08-001.pdf.- Title from the screen.
  2. Perelik rechovyn, produktiv, vyrobnychykh protsesiv, pobutovykh ta pryrodnykh faktoriv, kantserohennykh dlya lyudyny. Hihiyenichnyy normatyv: HN 1.1.2.123-2006. [Chynnyy vid 13-01-2006].- k., 2006. [Elektronnyy resurs] - Rezhym dostupu: http://zakon.nau.ua/doc/?code=z0100-06.
  3. Les maladies professionnelles: régime general - INRS, 2012. [Electronic resource] - Mode of access: http://www.inrs.fr/accueil/produits/bdd/mp.html. - Title from the screen.
  4. Mikroelementozy cheloveka: etiologiya, klassifikatsiya, organopatologiya / Avtsyn A. P., Zhavoronkov A. a., Rish M. a., Strochkova L. S.- M.: Meditsina, 1991.- 496 s.
  5. Serebrov A. I. Professional'nyye novoobrazovaniya / Serebrov A. I., Danetskaya O. l.- L. : Meditsina, 1976.- 104 s.
  6. Raykhman YA. G. Upravleniye kantserogennoy situatsiyey i profilaktika raka (sistemnyy podkhod) / Raykhman YA. G., Nilyudin V. a.- Elista: Dzhangar, 1999.- 270 s.
  7. Ishchenko L.O., Lugovskyi S.P., Sidak E.R. (2010), "Epidemiological analysis of the incidence of malignant neoplasm in the population of the radon-dangerous Krivoy Rog iron ore region", Hihiyena naselenykh mest, Issue 56, 379-384.
  8. Lubyanova I.P., Novichenko N.L.(1995), "On the issue of carcinogenic risk in the profession of a steel welder", Vrachebnoye delo,4, 88-91.
  9. Characteristics and modifying factors of asbestos- induced oxidative DNA damage // Jiang L., Nagai H., Ohara H. [et al.] // Cancer Sci.- 2008.- V. 99, No 11.- P 2142-2151.
  10. Growth promotion of transformed cells by iron in serum-free culture / Basset P, Zwiller J., Revel M. O. [et al.] // Carcinogenesis.- 1985.- V. 6, No 3.- R 355-359. https://doi.org/10.1093/carcin/6.3.355
  11. Theil E. C. Ferritin: Structure, Gene Regulation, and Cellular Function in Animals, Plants, and Microorganisms / Theil E. C. // Annu. Rev. Biochem.- 1987.- V. 56.- P 289-315. https://doi.org/10.1146/annurev.bi.56.070187.001445
  12. Belous A. A. Fiziologicheskaya rol' zheleza / Belous A. A., Konnik K. T.- K.: Nauk. dumka, 1991.104 s.
  13. Toyokuni Sh. Role of iron in carcinogenesis: cancer as a ferrotoxic disease / Toyokun Sh. // Cancer Sci.- 2009.- V. 100, No 1 - R 9-16. https://doi.org/10.1111/j.1349-7006.2008.01001.x
  14. Wang S. J. Advancement of the study on iron metabolism and regulation in tumor cells / Wang S. J., Gao C., Chen B. A. // Chin. J. Cancer.- 2010.- V 29, No 4.- P 451-455. https://doi.org/10.5732/cjc.009.10716
  15. Bohnsack B. L. Nutrient regulation of cell cycle progression / Bohnsack B. L., Hirschi K. K. // Annu. Rev. Nutr- 2004.- No 24.- P. 433-453. https://doi.org/10.1146/annurev.nutr.23.011702.073203
  16. Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators / Nyholm S., Mann G. J., Johansson A. G. [et al.] // J. Biol. Chem.- 1993.- V 268, No 35.- P. 26200-26205.
  17. The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase / Cooper C. E., Lynagh G. R., Hoyes K. P. [et al.] // J. Biol. Chem.- 1996.- V. 271, No 34.- P. 20291-20299. https://doi.org/10.1074/jbc.271.34.20291
  18. Witt L. Regulation of ribonucleotide reductase activity and its possible exploitation in chemotherapy / Witt L., Yap T, Blakley R. L. // Adv. Enzyme Regul.- 1978.-No 17.- P. 157-171. https://doi.org/10.1016/0065-2571(79)90012-8
  19. Torti S. V. Ironing out cancer / Torti S. V., Torti F. M. // Cancer Res.- 2011.- V. 71, No 5.- P. 1511-1514. https://doi.org/10.1158/0008-5472.CAN-10-3614
  20. Lubyanova I.P. (2010), "Modern views on iron metabolism from the position of a pathologist", Aktualnye problemy sovremennoi meditsiny, 2, 47-57.
  21. Frazzon J. Biosynthesis of iron-sulphur clusters is a complex and highly conserved process / Frazzon J., Fick J. R., Dean D. R. // Biochem. Soc. Trans.- 2002.- V. 30, No 4.- P. 680-685. https://doi.org/10.1042/bst0300680
  22. Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis / Furukawa T, Naitoh Y., Kohno H. [et al.].- 1992.- V. 50, No 26.- P. 2059-2065. https://doi.org/10.1016/0024-3205(92)90572-7
  23. Le N. T. The role of iron in cell cycle progression and the proliferation of neoplastic cells / Le N. T., Richardson D. R. // Biochem. Biophys. Acta.- 2002.- V. 1603, No 1.- P 31-46. https://doi.org/10.1016/S0304-419X(02)00068-9
  24. Rouault T. A. iron-sulfur cluster biogenesis and human disease / Rouault T A., Tong W. H. // Trends. Genetics.- 2008.- V. 24, No 8.- P 398-407. https://doi.org/10.1016/j.tig.2008.05.008
  25. Weinberg E. D. Iron out-of-balance: a risk factor for acute and chronic diseases / Weinberg E. D. // Hemoglobin - 2008.- V. 32, No 1-2.- P 117-122. https://doi.org/10.1080/03630260701680805
  26. Body iron metabolism and pathophysiology of iron overload / Kohgo Y, Ikuta K., Ohtake T [et al.] // Int. J. Hematol.- 2008.- V. 88, No 1.- P 7-15. https://doi.org/10.1007/s12185-008-0120-5
  27. Luminal Iron Levels Govern Intestinal Tumorigenesis after Apc Loss In Vivo / Radulescu S., Matthew J. B., Pedro Salgueiro [et al.] // Cell Reports.- 2012.- V. 2, No 2.- P 270-282. https://doi.org/10.1016/j.celrep.2012.07.003
  28. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation / Ganz T // Blood.- 2003.- V 102.- P 783-788. https://doi.org/10.1182/blood-2003-03-0672
  29. The iron-regulatory peptide hormone hepcidin: expression and cellular localization in the mammalian kidney / Kulaksiz H., Theilig F., Bachmann S. [et al.] // J. Endocrinol.- 2005.- V. 184.- P 361-370. https://doi.org/10.1677/joe.1.05729
  30. Hepcidin: from discovery to differential diagnosis / Kemna E. H, Tjalsma H., Willems H. L. [et al.] // Haematologica - 2008.- V. 93, No 1.- P. 90-97. https://doi.org/10.3324/haematol.11705
  31. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity / Krause A., Neitz S., Magert H. J. [et al.] // FEBS Letters - 2000.-V 480.- P. 147-150. https://doi.org/10.1016/S0014-5793(00)01920-7
  32. Hepcidin expression and iron transport in alveolar macrophages / Nguyen N. B., Callaghan K. D., Ghio A. J. [et al.] // Am. J. Physiol. Lung Cell. Mol. Physiol.- 2006.-V 291.- P. 417-425. https://doi.org/10.1152/ajplung.00484.2005
  33. Ganz T. Hepcidin. A regulator of intestinal iron absorption and iron recycling by macrophages / Ganz T. // Best. Pract. Res. Clin. Haematol - 2005.- V. 18.- P 171-82. https://doi.org/10.1016/j.beha.2004.08.020
  34. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin / Nemeth E., Rivera S., Gabayan V. [et al.] // J. Clin. Invest.- 2004.- V 113, No 9.- P 1271-1276. https://doi.org/10.1172/JCI200420945
  35. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS / Kemna E., Pickkers R, Nemeth E. [et al.] // Blood.- 2005.- V. 106, No 5.- P 1864-1866. https://doi.org/10.1182/blood-2005-03-1159
  36. Gepsidin kak regulyator gomeostaza zheleza / Levina A. A., Kazyukova T. V., Tsvetayeva N. V. [i dr.] // Pediatriya - 2008.- T. 87, No 1.- S. 67-74.
  37. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization / Nemeth E., Tuttle M., Powelson J. [et al.] // Science - 2004.- V. 306, No 5704.- P. 2090-2093.
  38. Weiss G. Anemia of Chronic Disease / Weiss G., Goodnough L. T // N. Engl. J. Med.- 2005.- V. 352.- P 1011-1023. https://doi.org/10.1056/NEJMra041809
  39. Serum hepcidin: reference ranges and biochemical correlates in the general population / Galesloot T E., Vermeulen S. H., Geurts-Moespot A. J. [et al.] // Blood.- 2011.- V. 117, No 25.- P 218-225. https://doi.org/10.1182/blood-2011-02-337907
  40. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein / Nemeth E., Valore E. V., Territo M. [et al.] // Blood - 2003.- V. 101, No 7.- R 2461-2463. https://doi.org/10.1182/blood-2002-10-3235
  41. Ganz T. Hepcidin and iron regulation, 10 years later / Ganz T // Blood - 2011.- V. 117.- R 4425-4433. https://doi.org/10.1182/blood-2011-01-258467
  42. In vivo tumor growth is inhibited by cytosolic iron deprivation caused by the expression of mitochondrial ferritin / Guangjun N., Guohua Ch., Sheftel A. D. [et al.] // Blood - 2006.- V. 108, No 7.- R. 2428-2434. https://doi.org/10.1182/blood-2006-04-018341
  43. Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts / Chen G., Fillebeen C.,WangJ., Rantopoulos K. // Carcinogenesis.- 2007.- V. 28, No 4.- R 785-791. https://doi.org/10.1093/carcin/bgl210
  44. Ratledge C. Iron, mycobacteria and tuberculosis/ Ratledge C. // Tuberculosis (Edinb.) - 2004.- V. 84, No 1-2.- R 110-130. https://doi.org/10.1016/j.tube.2003.08.012
  45. Chung J. Copper-induced ferroportin-1 expression in J774 macrophages is associated with increased iron efflux / Chung J., Haile D. J., Wessling- Resnick M. // Rroc. Natl. Acad. Sci. USA - 2004.- V. 101, No 9.- R 2700-2705. https://doi.org/10.1073/pnas.0306622101
  46. Lee D. W. Iron Dysregulation and Neurodegeneration / Lee D. W., Andersen J. K., Kaur D. // Mol. Interv.- 2006.- V. 6, No 2.- R 89-97. https://doi.org/10.1124/mi.6.2.6
  47. Benhar M. ROS, Stress-activated kinase and stress signaling in cancer / Benhar M., Engelberg D., Levitzki A. // EMBO reports.- 2002.- V. 3, No 5.- R 420-425.
  48. Jackson A. L. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer / Jackson A. L., Loeb L. A. // Mutat. Res.- 2001.- V. 477, No 1-2.- R 7-21.
  49. Szatrowski T R. Production of large amounts of hydrogen peroxide by human tumor cells / Szatrowski T R, Nathan C. F. // Cancer Res.- 1991.- V. 51, No 3.- R 794-798.
  50. Gupta A. Increased ROS levels contribute to elevated transcription factor and MAR kinase activities in malignantly progressed mouse keratinocyte cell lines / Gupta A., Rosenberger S. F., Bowden G. T // Carcinogenesis.- 1999.- V. 20, No 11.- R 2063-2073. https://doi.org/10.1093/carcin/20.11.2063
  51. Epidermal growth factor (EGF) - induced generation of hydrogen peroxide. Role in EGF receptor- mediated tyrosine phosphorylation / Bae Y. S.,Kang S. W., Seo M. S. [et al.] // J. Biol. Chem.- 1997.- V. 272, No 1.- R 217-221. https://doi.org/10.1074/jbc.272.1.217
  52. Rlatelet-derived growth factor-induced H(2)0(2) production requires the activation of phosphatidylinositol 3-kinase / Bae Y. S., Sung J. Y, Kim O. S [et al.] // J. Biol. Chem.- 2000.- V. 275, No 14.- R 10527-10531. https://doi.org/10.1074/jbc.275.14.10527
  53. Nitric oxide-mediated inactivation of mammalian ferrochelatase in vivo and in vitro: possible involvement of the iron-sulphur cluster of the enzyme / Furukawa T.,Kohno H., Tokunaga R. [et al.] // Biochem. J.- 1995.- V. 310.- R 533-540.
  54. Hamza I. Intracellular trafficking of porphyrins / Hamza I. // ACS Chem. Biol.- 2006.- V. 1, No 11.- P. 627-629. https://doi.org/10.1021/cb600442b
  55. Iron and porphyrin trafficking in heme biogenesis / Schultz I. J., Chen C., Raw B. H., Hamza I. // J. Biol. Chem.- 2010.- V 285, No 35.- P. 26753-26759. https://doi.org/10.1074/jbc.R110.119503
  56. Torti F. M. Regulation of ferritin genes and protein / Torti F. M., Torti S. V. // Blood - 2002.- V. 99, No 11.- P. 3505-3516. https://doi.org/10.1182/blood.V99.10.3505
  57. Hintze K. J. Cellular regulation and molecular interactions of the ferritins. [Electronic resource] / Hintze K. J., Theil E.C. // Cell. Mol. Life Sci.- 2005. -25.- Mode of access: http://www.chori.org/Rrincipal_Investigators/Theil_Elizabeth_C/Downloaables/CMLS%20Hintze%202_06.pdf. - Title from the screen.
  58. Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis / Zhang Y., Lyver E. R., Nakamaru-Ogiso E. [et al.] // Mol. Cell. Biol.- 2008.- V. 28, No 18.- P. 5569-5582. https://doi.org/10.1128/MCB.00642-08
  59. Oshiro S. Dysrégulation of iron metabolism in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis [Electronic resource] / Oshiro S., Morioka M. S., Kikuchi M. // Adv. Pharmacol. Scien.- 2011.- V. 2011.- 8 p.- Mode of access: http://wwwhindawi.com/Journals/aps/2011/378278/ - Title from the screen. https://doi.org/10.1155/2011/378278
  60. Ovchinnikov L. P. Chto i kak zakodirovano v mRNK / Ovchinnikov L. P. // Sorosovskiy obrazovat. zhurn.- 1998.- No 4.- S. 10-18.
  61. Levi S. The role of iron in mitochondrial function / Levi S., Rovida E. // Biochim. Biophys. Acta.- 2009.- V. 1790, No 7.- P. 629-36. https://doi.org/10.1016/j.bbagen.2008.09.008
  62. De Moura M. B. Mitochondrial dysfunction in neurodegenerative diseases and cancer / de Moura M. B., dos Santos L. S., Van Houten B. // Environ. Mol. Mutagen.- 2010.- V. 51, No 5.- P. 391-405. https://doi.org/10.1002/em.20575
  63. Mitochondria in hematopoiesis and hematological diseases / Fontenay M., Cathelin S., Amiot M. [at el.] // Oncogene.- 2006.- V. 25, No 34.- P. 4757-4767. https://doi.org/10.1038/sj.onc.1209606
  64. Kagan J. Mitochondria as a target for early detection and diagnosis of cancer / Kagan J., Srivastava S. // Crit. Rev. Clin. Lab. Sci.- 2005.- V. 42, No 5-6.- R 453-472. https://doi.org/10.1080/10408360500295477
  65. Do alterations in mitochondrial DNA play a role in breast carcinogenesis? / Rohan T. E., Wong L. J., Wang T [at el.] // J. Oncol.- 2010 - V. 2.- P. 1-11. https://doi.org/10.1155/2010/604304
  66. Ristow M. Oxidative metabolism in cancer growth / Ristow M. // Curr. Opin. Clin. Nutr. Metab. Care- 2006.- V. 9, No 4.- P. 339-345. https://doi.org/10.1097/01.mco.0000232892.43921.98
  67. King A. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer / King A., Selak M. A., Gottlieb E. // Oncogene.- 2006.- V. 25, No 34.- P. 4675-4682. https://doi.org/10.1038/sj.onc.1209594
  68. Inhibitory effects of nitric oxide on invasion of human cancer cells / Wang F., Zhang R., Xia T. [et al.] // Cancer Lett.- 2007.- V 257, No 2.- R 274-282. https://doi.org/10.1016/j.canlet.2007.08.001
  69. Frataxin participates to the hypoxia-induced response in tumors / Guccini I., Serio D., Condo I. [et al.] // Cell Death.- 2011.- V. 24.- R. el23.- Mode of access: http://www.nature.com/cddis/journal/v2/n2/pdf/cddis20115a.pdf. - Title from the screen. https://doi.org/10.1038/cddis.2011.5
  70. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice / Thierbach R., Schulz T J., Isken F. [et al.] // Hum Mol Genet.- 2005.- V. 14, No 24.- R 3857-3864. https://doi.org/10.1093/hmg/ddi410
  71. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU / Favaro E., Ramachandran a., McCormick R. [et al.] // PLoS One.- 2010.- V. 5, No 4.- P. 1-11. https://doi.org/10.1371/journal.pone.0010345
  72. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation / Huang X., Ding L., Bennewith K. L. [et al.] // Mol Cell.- 2009.- V. 35, No 6.- P. 856-867. https://doi.org/10.1016/j.molcel.2009.09.006
  73. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma / Lawrie C. H., Gal S., Dunlop H. M. [et al.] // Br. J. Haematol.- 2008.- V. 141, No 5.- P. 672-675. https://doi.org/10.1111/j.1365-2141.2008.07077.x
  74. Rouault T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease / Rouault T. A. // Nat. Chem. Biol.- 2006.- V. 2, No 8.- P. 406-414. https://doi.org/10.1038/nchembio807